

PUBLIC

Code Assessment

of the Mangrove

Smart Contract

March 21, 2023

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 System Overview 7

4 Limitations and use of report 12

5 Terminology 13

6 Findings 14

7 Resolved Findings 17

8 Notes 23

Mangrove Association (ADDMA) - Mangrove - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear all,

Thank you for trusting us to help Mangrove Association (ADDMA) with this security audit. Our executive
summary provides an overview of subjects covered in our audit of the latest reviewed contracts of
Mangrove according to Scope to support you in forming an opinion on their security risks.

Mangrove Association (ADDMA) implements an offer book exchange supporting markets between two
assets. Makers create and takers consume offers which are promises of makers to provide the offered
token at a certain price. To ensure the executability of offers, makers must deposit ether for gas
reimbursements on failure.

This latest iteration of the review focussed on the change that fees collected now remain in the Mangrove
contract instead of being forwarded to a vault contract.

The most critical subjects covered in our audit are functional correctness, access control, precision of
arithmetic operations, front-running and signature handling. Security regarding most of the
aforementioned subjects is high. Security of signature handling is basic due to possible ECDSA
malleability, see ECDSA Signature Malleability. Security of front-running is good but keepers could lose
funds to rogue makers unexpectedly due to unawareness of the exact functionality of sniping, see No
Protection for Keepers.

The general subjects covered are unit testing, documentation, specification, gas efficiency and error
handling. Security regarding all the aforementioned subjects is high.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Mangrove Association (ADDMA) - Mangrove - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 1

• Code Corrected 1

High -Severity Findings 0

Medium -Severity Findings 3

• Code Corrected 2

• Risk Accepted 1

Low -Severity Findings 12

• Code Corrected 7

• Specification Changed 1

• Risk Accepted 2

• Acknowledged 2

Mangrove Association (ADDMA) - Mangrove - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section we briefly describe the overall structure and scope of the engagement including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files for the Mangrove contract inside the private
Mangrove-archive repository based on the documentation files. Namely this includes the following files:

• AbstractMangrove.sol

• Mangrove.sol

• IMangrove.sol

• MgvGovernable.sol

• MgvHasOffer.sol

• MgvLib.sol

• MgvOfferMaking.sol

• MgvOfferTaking.sol

• MgvOfferTakingWithPermit.sol

• MgvRoot.sol

Version 3

Chainsecurity confirms that code of the main Mangrove contract in the public repository (mangrove-ts) at
the listed commit is equal to the final code of the Mangrove contract as in the private repo. For
the final commit, only the public repository was considered.

Version 6 Version 7 and were reviewed from the mangrove-core repository.

The table below indicates the code versions relevant to this report and when they were received.

Mangrove-archive

V
Date Commit Hash Note

1
28 June 2021 43e003314740adddf584f729856139f84feff813 Initial Version

2
14 July 2021 f122b2017da774638b49ae4272bdf1e2ca5866a

2
After Intermediate Report

3
21 February
2022

b41725a596c760c52d66c18a8c6ae5904d51d7
4d

Updated code

4
02 March 2022 9bee9671a146483335c58bfff2f501d398599507 Update fixes

Mangrove-ts Repository

V
Date Commit Hash Note

1
21 February 2022 e15455d4937535e65209035ba05c2bc9579f612

9
Corresponding version 3

Mangrove Association (ADDMA) - Mangrove - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

2
02 March 2022 a0fff969396a3b1f7edac1a0f6ffff3af30b0ac7 Corresponding version 4

3
09 May 2022 2fc357f369416afdc2846cc9d5be483b75169e8d Version 5

Mangrove-core Repository

V
Date Commit Hash Note

1
10 May 2022 c9fb1bcd4229da880d2c1c88830c25b9c873f4f0 Corresponding Version 5

2
20 December
2022

0a96c17267355819d89f0760d4dd0157404271
1e

Mangrove Receives Fees 6

3
20 February 2023 18ebd898c591fda33ff9b57361b14bad8f2d13a0 Adapt for other strats 7

4
20 March 2023 3bff09efba82a6d55d19eeb807654833339785f1 Fixes 7

Version 6

Version 7

For the solidity smart contracts, the compiler version 0.7.6 was chosen. In the updated code the
compiler version was updated to 0.8.10. In the compiler version was updated to 0.8.14. In

 the compiler version was updated to 0.8.17.

2.1.1 Excluded from scope
Version 3

Version 6

The contracts in subfolder LPcontracts (renamed to Strategies in) are out of scope. Other
subfolder added in such as periphery and toy_strategies are also out of scope.

The project makes use of the solpp preprocessor and the smart contracts contain solpp instructions. The
review has been done on the code containing solpp instructions, the correct working of the solpp
preprocessor to generate the correct solidity code is out of scope.

In version 3, preprocessing code has been removed from the core contracts which was added to the
newly introduced MgvPack.sol which is out of scope and assumed to be correct.

Note that for version 5, the archive repository is out of scope.

Mangrove Association (ADDMA) - Mangrove - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

3 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

At the end of this report section we have added subsections for each of the changes accordingly to the
versions. Furthermore, in the findings section we have added a version icon to each of the findings to
increase the readability of the report.

Mangrove implements an offer book based exchange. Individual offer books exist for each market
consisting of a base and a quote asset. Technically an offer book is a sorted doubly linked list of offers.
Each offer promises an amount of the so-called base asset and requests a certain amount of the quote
asset. Makers create these offers. Takers take these offers by executing a so-called order. During the
execution of an order, the amount of the base quote is transferred to the maker first before the maker
address is called to execute arbitrary code. During this call, the maker must do all actions necessary and
make the amount of the base asset available for the exchange to collect.

Offers are just promises and the execution of an order may fail. When an offer fails e.g., because it failed
to make available the amount of tokens to the exchange, the execution of the order is stopped. A penalty
mechanism exists to incentivize makers to have working offers. Upon offer creation, the maker has to
provide a so-called provision in Ether to cover for the gas costs should the transaction revert. If the offer
succeeds, the provision is returned to the maker. When an offer fails, a part of the provision is given to
the taker to compensate for his lost gas costs.

A callback to the maker at the end of an exchange allows the maker to update his offer.

The system is administrated by the governance which can add/remove or pause token pairs or change
the parameters of the system.

The most important functions are:

Offer Creation:

newOffer(): This function allows anyone to create a new offer. Similarly updateOffer and
retractOffer allow the maker to change and remove his existing offers respectively. The given
amount must be above a certain threshold compared to its gas requirement multiplied by the market's
density parameters.

General Market Order:

marketOrder(): A taker, who can be anyone, can call this function and specify the amount of the base
and the quote asset they are willing to spend. The smart contract executes the order by iterating through
the offer book until either the order is filled or the price of the remaining offers is too high or the end of the
offer book has been reached. The order can be filled in two ways depending on the fillWants
parameter. If this parameter is set to true, then, the order is filled if the total base asset (what the taker
wants) has been obtained. Otherwise, the order is filled if the total quote asset (what the taker gives) has
been sold.

Technically, the execution works as follows:

The taker initiates a so called order which consumes offers inside the offerbook. During execution, a
multiOrders struct keeps track of the overall order state while a single order struct is used to keep
track of data related to the execution of the current single offer being processed within the whole order
execution. A reentrancy lock ensures that the market for this base/quote pair is locked during the actual
execution. The order execution starts with the current best offer. The filling is executed recursively until
either the order has been fulfilled (parameter dependent either the order fill or order gives limit has been
reached), there is no offer left in the offer book or the price of the next offer will make the average price
exceed what the taker is ready to pay across all offers that are being executed during the market order.

Wrapped in a fail-safe call (meaning any revert will be caught) the following steps are executed:

Mangrove Association (ADDMA) - Mangrove - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

1. Transfer of the quote asset from the Maker to the Mangrove contract

2. Transfer of the quote asset from the Mangrove to the Maker address

3. Call of function makerExecute() passing the struct singleOrder as argument to the Maker
address passing along gasreq amount of gas as defined by Offer. The gas amount used
during this call including some overhead to handle the return data is recorded.

4. Check whether the call was successful

5. Transfer of the base asset from the Maker to the Mangrove contract

Any issue will lead to a revert of this inner call with an appropriate error message. This error
message will be caught and handled appropriately by the execution flow.

Such failure reasons are:

Taker fault:

• mgv/notEnoughGasForMakerTrade: the taker provided insufficient gas

• mgv/takerTransferFail: transferFrom() of tokens from the taker to Mangrove failed

Maker fault:

• mgv/makerRevert: The execution of the call to Maker.makerExecute() failed

• mgv/makerTransferFail: transferFrom() of tokens from maker to Mangrove failed

• mgv/makerReceiveFail: transfer() to the maker from Mangrove failed

After the failsafe call completes, its return data is handled.

If the call was successful the amounts received/paid in the multi order struct are updated accordingly.
If the call has been unsuccessful and the taker is at fault, the whole transaction is reverted.

If the order has been executed, either successfully or unsuccessfully due to a fault by the maker the
offer is removed from the offer book. In case it was unsuccessful the order is deprovisioned. Note this
step is skipped when the offer has not been executed due to the price not being acceptable. At the
end, the status of the order is propagated to the caller of the function.

The next best offer is taken from the offer book and the struct single order is updated accordingly
before innerMarketOrder() is called recursively.

In order to terminate the recursion, internalMarketOrder() first checks if one of the conditions
to terminate has been reached. If so it updates the pointer to the current best order, disables the
reentrancy lock and initiates the transfer of the tokens to the taker while applying the fee.

After the recursion has reached the bottom the post processing of the order is done while stepping out of
the recursion. This means the offers are now handled in reverse order: While orders have been executed
in order 1-2-3, the post processing happens in reverse order 3-2-1.

During the post execution inside the recursion the following is executed for each:

The postExecute callback on the maker's address is executed. This allows the maker to update
their offers. Note that this is now possible as the lock on the market has been lifted (which would
have prevented the update of offers). The code is indifferent of whether this call is successful or not.
While the gas consumption of this post hook call to the maker contract is counted, it's only refunded
to the taker when the maker offer failed. In case the offer was not executed successfully, the penalty
is applied here. Applying the penalty means calculating the difference in gas used vs provision
provided by the maker, the difference is refunded to the maker. The total penalty for the taker is
accrued.

Outside of the recursion the accrued Penalty (if there is one) is sent to the taker and the call terminates.

Important to note, an offer that is used during the execution of an order is always consumed. Even when
the order does not consume the whole amount available in the offer, the offer is taken out of the offer
book. A callback at the end of the order execution allows the maker to reinstate the order.

Mangrove Association (ADDMA) - Mangrove - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

Sniping:

snipe(): Instead of taking the currently best available offer for a token pair, using function snipe a
taker can specify the exact offerId to execute.

This may be desired for multiple reasons, including:

• For Keepers: Executing offers that fail and collecting the gas provision is worthwhile and helps to
keep the offer book clean.

• For Takers: Executing a specific offer may be worthwhile as the callback to the maker may require
less gas compared to the currently available best offer.

Similarly snipes() allows to execute multiple offers at once. Note that in this case takerWants and
takerGives are specified per offer and not over the whole order.

While sniping an offer may technically be possible with zero amounts for taker.gives / taker.wants,
smart makers could easily make such orders succeed and keep the provision. Generally, to remove an
offer one has to execute it either successfully or unsuccessfully. For this, the taker has to provide an
amount of the token quoted upfront where the maker lets the transaction fail on his end.

Mechanism of the penalty system:

Whenever an offer fails to hold its promise, part of the provision put up by the maker is paid to the taker
as penalty. This penalty should overcompensate the taker for his lost gas cost and hence incentives
keepers to keep the offer book free of failing orders. The actual amount of gas the penalty accounts for
depends on how many offers executed in this order have failed and is calculated as:

(gasreq + overhead_gasbase/n + offer_gasbase)

This aims to keep the actual penalty low while ensuring it overcompensates for the actual lost gas. E.g. if
multiple order fail during a marketOrder, the base costs (think of e.g. the tx base fee and the overhead
executing code of Mangrove) are split in their penalty. However for failing orders the maximum penalty is
always at risk if keepers choose to snipe the order individually.

This gas amount to be compensated is then multiplied with the current global gasprice of Mangrove. As
the provision (which was based on the gas price at the time the offer was created) may be insufficient to
cover the penalty, the penalty is capped at the provision of the order.

Delegation of rights to take orders:

Takers may provide allowances on specific pairs, so approved addresses can take orders in their name.
To do so, takers either give the approval directly on chain or craft a EIP712 signature which the approved
address can use on chain to activate his allowance. The approved account can use this allowance on the
specific pair to execute marketOrderFor() and snipeFor/snipesFor() in the name of the taker
who gave the allowance.

When using the permit() functionality one has to respect the sequence of the signatures: Due to the
ever incrementing nonce used the signatures generated by a particular taker have to be used on-chain in
the right order according to their nonce.

3.1 Roles
Untrusted roles which can be executed by anyone:

Makers: Create offers into the offer book, hence provide the liquidity.

Takers: Take and execute offers of the offer book.

Approved addresses: Can take offers on behalf of takers that approved them. These addresses must be
fully trusted by the respective taker.

Keepers: Keep the offer book clean by executing failing orders and collecting the provision.

Trusted roles:

Mangrove Association (ADDMA) - Mangrove - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

Governance: Administrates the system. Can set the following parameters:

Market related:

• Adding a market: This constitutes adding a pair of ERC20 tokens as base and quote
respectively. Note that only tokens with no special behavior are intended to be added. Moreover,
adding a market includes setting the fee, density, overhead_gasbase and
offer_gasbase.

• All the parameters for a market can be changed individually

• Deactivating a market

• Killing the entire system - In a dead system no offers can be created/updated and orders can no
longer be executed. Maker can still retract their offer and withdraw their provision.

Global parameters, can update the following parameters of the system:

• Set the Governance address

• Set Vault address

• Set Monitor address

• Set the boolean UseOracle

• Set the boolean Notify

• Setting general parameters like updating the Governance address, changing the Monitor
address

Monitor: External system contract. Used while loading the configuration when useOracle is active.
Returns information about the density and gasPrice for the base / quote asset combination. Fully
trusted that this information is correct and does not exceed uint16 for gasPrice or uint32 for
density respectively. Additionally this contract may be called during the execution for notifySuccess
or notifyFail if the notification is enabled. The contract is fully trusted to behave honestly.

Vault: Address receiving the fees

3.2 Changes in Version 3
The following functional changes were introduced in version 3:

• The separate function for single-snipes has been removed. Snipes() now loops over the offers
one by one instead of recursively executing them. This isolates the execution of multiple snipes from
each other.

• overhead_gasbase has been removed.

• getConfig() has been removed, a similar function configInfo() has been added.

• Events OrderStart and OrderComplete before/after market and snipe execution have been
added. The field prev has been added to event OfferWrite.

• The governance address can now be specified as parameter during deployment.

• The following renaming took place:

• base -> outbound_tkn, quote -> inbound_tkn

• statusCode -> mgvData

• restrictedCall -> controlledCall

Mangrove Association (ADDMA) - Mangrove - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

• The interface changed: Makers are now expected not to return anything upon success. Nonzero
return data in the first 32 bytes will be treated as "Maker abort". This implies that for offers
successfully executed the postHook callback passes empty data for parameter makerData.

• updateOffer() no longer has a return value. retractOffer() now returns the freed provision.
Functions matchOrder and Snipe now return the penalty ("bounty").

• Functions newOffer and updateOffer can be funded when called.

• Calling permit to issue an approval now emits an approval event.

3.3 Changes in Version 5
The following functional changes were introduced in version 4:

• All taker functions (marketOrder/snipes) now additionally return the fee paid.

• The posthook event emitted when the posthook call reverts now includes the returned data.

• The success condition on makerExecute() has been relaxed. No revert means success, non-zero
return data is now allowed. As a consequence, in case the subsequent transfer of tokens from the
Maker to Mangrove isn't successfull, data returned by the successfull call is included in makerData
passed to innerRevert().

• Data returned from calls to the maker is read differently: In case of success the first 32 bytes are
read, otherwise bytes 69..100 which allows to read the first 32 bytes of a regular solidity revert.

3.4 Changes in Version 6
Fees accrued now remain in the Mangrove contract instead of being forwarded to the vault. Governance
can withdraw any ERC20 Token balance of the Mangrove contract. Functionality to set the vault address
has been removed.

3.5 Changes in Version 7
Low level calls are now encoded with abi.encodeCall to ensure type checking. The function
IMaker.makerExecute has been updated to return data on top of gasused, in the form of bytes32,
that can be reused during makerPosthook.

Mangrove Association (ADDMA) - Mangrove - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

4 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts associated with the items defined in the
engagement letter on whether it is used in accordance with its specifications by the user meeting the
criteria predefined in the business specification. We draw attention to the fact that due to inherent
limitations in any software development process and software product an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third party technology stack itself. Report readers should also take into account
the facts that over the life cycle of any software product changes to the product itself or to its
environment, in which it is operated, can have an impact leading to operational behaviours other than
initially determined in the business specification.

Mangrove Association (ADDMA) - Mangrove - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

5 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severities. These severities
are derived from the likelihood and the impact using the following table, following a standard risk
assessment procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Mangrove Association (ADDMA) - Mangrove - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

6 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 1

• Risk AcceptedNo Protection for Keepers

Low -Severity Findings 4

• Risk AcceptedECDSA Signature Malleability

• AcknowledgedNo Minimum Value for gasreq

• AcknowledgedRedundant Check in writeOffer

• Risk AcceptedSpamming the Offerbook

6.1 No Protection for Keepers
Design Medium Version 1 Risk Accepted

ISSUEIDPREFIX-001

Generally, keepers may just be interested in collecting the penalty of failing offers. In Mangrove however,
an offer could always succeed unexpectedly due to changing on-chain conditions. In this case, a
keeper/taker may have executed an offer he did not actually intended to take and which may had a bad
exchange rate. Note that offers may only fail when significant amounts of tokens are flashloaned to the
maker up front but the very same offer may succeed for lower amounts.

Unaware keepers may be tricked by honeypot offers (offers that appear to fail but in reality don't fail) by
malicious makers.

Keepers may protect themself by wrapping their call in a smart contract and checking for the expected
outcome, but the code of Mangrove itself does not offer such a feature directly.

Risk Accepted:

Mangrove Association (ADDMA) responded: Indeed all keepers should wrap their calls in a reverting
contract. This protective wrapper does not need to be inside Mangrove. We plan to provide a standard
wrapper at a separate address.

Mangrove Association (ADDMA) - Mangrove - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

6.2 ECDSA Signature Malleability
Design Low Version 1 Risk Accepted

ISSUEIDPREFIX-002

The permit function utilizes the ECDSA scheme. However missing checks for the v, r and s arguments
allow attackers to craft malleable signatures. According to Yellowpaper Appendix F, the signature is
considered valid only if v, r and s values meet certain conditions. The ecrecover for invalid values will
return address 0x0 and verification will fail without informative error. The OpenZeppelin's ECDSA library
performs such checks and reverts with informative messages.

Risk Accepted:

Mangrove Association (ADDMA) responded: Code changes necessary for improved error messages
would go past the contract size limit.

6.3 No Minimum Value for gasreq
Design Low Version 1 Acknowledged

ISSUEIDPREFIX-003

Either to create a new offer or to update an existing one, the maker must provide a value for gasreq. In
the current implementation, there is no minimum required value. The value for gasreq may even be set to
0, which means 0 gas requirements for the calls executed on the maker's side. Nevertheless, both calls
are executed, the first call to makerExecute with all gas defined in gasreq and the second to
makerPosthook with the "leftover" gas from gasreq. With 0 gas these low-level calls are started but
immediately revert. The system could allow these calls to be skipped when the maker sets a zero / low
amount for gasreq.

Acknowledged:

Mangrove Association (ADDMA) responded: The gas saved by treating 0-gasreq as a special case is
not worth the added code complexity.

6.4 Redundant Check in writeOffer
Design Low Version 1 Acknowledged

ISSUEIDPREFIX-004

When writeOffer is called a check that ofp.gives > 0 is performed. However, the check presented
below is also performed and implies the same since both density and gasbase should be positive
under normal circumstances.

ofp.gives >=
 (ofp.gasreq + $$(local_offer_gasbase("ofp.local"))) *
 $$(local_density("ofp.local")),

No Issue:

Mangrove Association (ADDMA) - Mangrove - ChainSecurity - © Decentralized Security AG 15

https://ethereum.github.io/yellowpaper/paper.pdf
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/ECDSA.sol
https://chainsecurity.com

Mangrove Association (ADDMA) responded: It is possible for governance to set values such that the
second check does not imply the first. The first check maintains a critical invariant.

6.5 Spamming the Offerbook
Security Low Version 1 Risk Accepted

ISSUEIDPREFIX-005

An attacker may spam the offerbook with attractive offers reverting immediately upon execution.
Depending on the parameters chosen by the governance for density and offer_gasbase the
resulting minimum penalty paid for the failing offer may be rather low.

Notably it is sufficient to have 85 such failing offers in the offer book (offering a very low price to ensure to
be on top) to cause a revert of the transaction due to an EVM stack too deep error. Hence any
transaction to marketOrder() of this base/quote pair will revert leaving the state unchanged.

It's still possible for keepers to clean the offerbook by sniping these offers, however such offers may
reinstantiate themself during the makerPosthook().

Risk Accepted:

Mangrove Association (ADDMA) responded: Any self-reinserting spam is vulnerable to draining by any
keeper.

Mangrove Association (ADDMA) - Mangrove - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

7 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 1

• Code CorrectedDraining All Ether Provisions of Mangrove

High -Severity Findings 0

Medium -Severity Findings 2

• Code CorrectedIf Condition Always True

• Code CorrectedRounding Errors In Partial Filling

Low -Severity Findings 8

• Specification ChangedWrong Comment

• Code CorrectedCall in makerPosthook Fails Silently

• Code CorrectedFields of Events Not Indexed

• Code CorrectedImprecise Comment

• Code CorrectedMaximize Penalty Collected

• Code CorrectedMisleading Variable Names in stitchOffers

• Code CorrectedOverrestrictive Check in deductSenderAllowance

• Code CorrectedRepetitive Code

7.1 Draining All Ether Provisions of Mangrove
Security Critical Version 1 Code Corrected

ISSUEIDPREFIX-014

Makers can retract their offer by calling retractOffer(). This function accepts the boolean parameter
deprovision which allows the maker to choose to either deprovision the offer or not.

Deprovisioning an offer credits back the provision to the maker. At the same time it must be ensured that
this offer is removed from the offerbook and its gasprice must be set to 0 as the offer is no longer
provisioned.

Not all possible cases are handled correctly inside function retractOffer(). For offers that are not live
(this means they have a 0 amount for offer.gives) the provision can be credited back to the maker
without the offer's gasprice being set to zero.

Hence retractOffer() with deprovision set to true can be executed successfully repeatedly.
Consequently a maker can reclaim more provision than he initially paid for the offer. This bug allows to
eventually drain all Ether of Mangrove.

An offer can easily reach offers.gives = 0 which means it is considered to not be live:

• By calling retractOffer() with bool deprovision set to false, dirtyDeleteOffer() is
executed. This call sets offer.gives to zero however without setting offer.gasprice to zero
due to deprovision being false.

Mangrove Association (ADDMA) - Mangrove - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

• After the offer has been consumed by an order offer.gives is 0.

Code Corrected:

The call to dirtyDeleteOffer() was moved out of the isLive scope. Hence whenever
deprovision is set to true and the provision is credited back to the Maker, the order is deprovisioned.
Calling the function repeatedly on the same offer no longer allows to drain Ether of Mangrove, the issue
has been resolved.

7.2 If Condition Always True
Design Medium Version 1 Code Corrected

ISSUEIDPREFIX-006

During the execution of function execute the following check is performed:

if (statusCode != "mgv/notExecuted") {
 dirtyDeleteOffer(
 ...
);
}

However statusCode cannot have the value mgv/notExecuted at this point so the condition is always
true.

Code Corrected:

The code now runs unconditionally.

7.3 Rounding Errors In Partial Filling
Design Medium Version 1 Code Corrected

ISSUEIDPREFIX-015

A maker's order can be partially filled according to the following snippet:

if (mor.fillWants) {
 sor.gives = (offerWants * takerWants) / offerGives;
 } else {
 sor.wants = (offerGives * takerGives) / offerWants;
 }

Note that the division can yield rounding errors. The rounding errors can be as extreme as giving funds to
the maker without receiving anything in return or taking from the maker without giving anything back. For
example, consider the case where the maker offers 10 A for 5 B and taker wants to take only 1 A
(fillWants == true). Then, according to the formula she has to offer 5 * 1 / 10 = 0 B.

Code corrected

Mangrove Association (ADDMA) - Mangrove - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

Prices are now always rounded in favor for the taker to avoid any maker draining. Hence, to calculate
sor.gives when fillWants is true the code has been changed to:

uint product = offerWants * takerWants;
sor.gives =
 product /
 offerGives +
 (product % offerGives == 0 ? 0 : 1);

7.4 Wrong Comment
Correctness Low Version 7 Specification Changed

ISSUEIDPREFIX-016

In the function MgvOfferTaking.execute, the comment
In case of failure, `retdata` encodes the gas ... is present in the block
if(success), thus should be In case of success,

Specification changed:

The comment has been corrected.

7.5 Call in makerPosthook Fails Silently
Design Low Version 1 Code Corrected

ISSUEIDPREFIX-008

The return value success2 in makerPosthook() is never handled. Thus a failed execution of the hook
can go unnoticed and unlogged.

Code Corrected:

A log event is emitted on posthook revert.

7.6 Fields of Events Not Indexed
Design Low Version 1 Code Corrected

ISSUEIDPREFIX-011

No parameter of the events defined in MgvEvents is marked as indexed. Indexing fields of events, e.g.
addresses, allows to search for them easily.

/* Mangrove adds or removes wei from `maker`'s account */
 /* * Credit event occurs when an offer is removed from the Mangrove or when the `fund` function is called*/
 event Credit(address maker, uint amount);
 /* * Debit event occurs when an offer is posted or when the `withdraw` function is called */
 event Debit(address maker, uint amount);

 /* * Mangrove reconfiguration */

Mangrove Association (ADDMA) - Mangrove - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

 event SetActive(address base, address quote, bool value);
 event SetFee(address base, address quote, uint value);
 event SetGasbase(
 address base,
 address quote,
 uint overhead_gasbase,
 uint offer_gasbase
);

Code Corrected:

The relevant arguments were indexed.

7.7 Imprecise Comment
Correctness Low Version 1 Code Corrected

ISSUEIDPREFIX-007

At the beginning of function execute() the code handles whether the full offer is to be consumed or
only a partial amount of the offer should be taken by the order.

if (
 (mor.fillWants && offerGives < takerWants) ||
 (!mor.fillWants && offerWants < takerGives) ||
 offerWants == 0
) {
 sor.wants = offerGives;
 sor.gives = offerWants;
 /* If we are in neither of the above cases, then the offer will be partially consumed. */
} else {
 /* If `fillWants` is true, we give `takerWants` to the taker and adjust how much they
 give based on the offer's price. Note that we round down how much the taker will give. */
 if (mor.fillWants) {
 /* **Note**: We know statically that the offer is live (`offer.gives > 0`) since market
 orders only traverse live offers and `internalSnipes` check for offer liveness before executing. */
 sor.gives = (offerWants * takerWants) / offerGives;
 /* If `fillWants` is false, we take `takerGives` from the taker and adjust how much they get
 based on the offer's price. Note that we round down how much the taker will get.*/
 } else {
 /* **Note**: We know statically by outer `else` branch that `offerGives > 0`. */
 sor.wants = (offerGives * takerGives) / offerWants;
 }
}

The last comment

Note: We know statically by outer else branch that offerGives > 0.

is not entirely correct: While it holds that offerGives is > 0 this is not due to being in the outer else
branch but due to it having been ensured earlier that the offer is live, so offerGives is >0. Due to being
in the outer else branch we know that offerWants is non-zero and hence we are sure there will be no
division by zero which is the important consideration here.

Code Corrected:

The comment was changed to:

Note: We know statically by outer else branch that offerWants > 0.

Mangrove Association (ADDMA) - Mangrove - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

7.8 Maximize Penalty Collected
Design Low Version 1 Code Corrected

ISSUEIDPREFIX-009

Function snipes() allows keepers to snipe multiple failing offers at once and thereby collect the
penalty. However, when multiple offers fail within one order, the base gas fee is split amongst all failing
offers. This is done in order to distribute the base fees that applies once per transaction evenly across all
affected offers.

In order to maximize their profit, professional keepers may deploy their own smart contract calling
snipe() individually on each offer without increasing their expenses significantly, in order to ensure to
always collect the maximum penalty possible.

Code corrected:

The sniping mechanism has changed and, now, snipes() treats all snipes in isolation. With this change
overhead_gasbase was removed and the scenario described above no longer applies.

7.9 Misleading Variable Names in stitchOffers
Design Low Version 1 Code Corrected

ISSUEIDPREFIX-010

In stitchOffers the variable names worseId and betterId are used. However, the betterId
refers to the offer next to the offer under consideration and worseId refers to the previous one. This
seems to contradict the naming convention holding for the offerbook. According to this convention, for a
given offer, its previous offer is a better one and its next offer a worse one.

Code Corrected:

The names of the variables were swapped.

7.10 Overrestrictive Check in
deductSenderAllowance
Design Low Version 1 Code Corrected

ISSUEIDPREFIX-012

deductSenderAllowance checks if the amount used does for a trade does not exceed the allowance
the use has set. However, it prevents the full allowed amount from being used since the equality is not
checked.

require(allowed > amount, "mgv/lowAllowance");

Code Corrected:

Mangrove Association (ADDMA) - Mangrove - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

> was replaced with >=.

7.11 Repetitive Code
Design Low Version 1 Code Corrected

ISSUEIDPREFIX-013

In postExecute the following snippet is used right before the call to applyPenalty().

if (gasused > gasreq) {
 gasused = gasreq;
 }

Later, in applyPenalty the same snippet is repeated as follows:

if ($$(offerDetail_gasreq("sor.offerDetail")) < gasused) {
 gasused = $$(offerDetail_gasreq("sor.offerDetail"));
}

which is redundant.

Code Corrected:

The second check in postExecute was removed.

Mangrove Association (ADDMA) - Mangrove - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. Hence, the
mentioned topics serve to clarify or support the report, but do not require a modification inside the project.
Instead, they should raise awareness in order to improve the overall understanding for users and
developers.

8.1 Bitwords Benefits
Note Version 1

In the implementation of Mangrove, structs to be stored in storage and handled as bitwords. This is done
to improve gas efficiency. However, given that equivalent native solidity structs could fit in on storage
slot, the benefits from such a decision are questionable. The main downside of this decision is the extra
layer of complexity, introduced in the form of solidity code preprocessing, which aims to facilitate the
handling of such bitwords.

8.2 Choosing the Parameter gasreq
Note Version 1

When choosing the parameter gasreq, makers must be aware of certain things:

As described in the code, the maker may receive only gasreq−63h/64 gas, where h is the overhead of
(require + cost of CALL).

Nevertheless, should the call fail due to insufficient gas the maker is accountable for this and if the overall
gas remaining in the transaction is sufficient, the transaction penalizes the maker and completes
successfully.

The comment states:

We let the maker pay for the overhead of checking remaining gas and making the call.

Albeit minor, the maker also pays for the overhead to handle the return data. All of this needs to be taken
account when selecting the value for gasreq, especially in order to ensure enough gas will be available
to the call to makerPosthook.

8.3 Estimation of the Gas Limit for a
marketOrder Transaction
Note Version 1

Estimating the gas limit for a transaction to marketOrder is tricky. Underestimating it leads to the
transaction to revert, while overestimating it increases the risk of a high tx fee for a failing transaction.

Function marketOrder is dependent on the actual status of the offer book which may change
significantly between when the transaction is generated and signed and when it is executed by being
included inside a block. Offers may be added or removed resulting the gas requirement for the offers
being executed as part of the order may change significantly.

While marketOrder can skip failing offers and refund the taker, it can only do so successfully when the
transaction has enough gas.

To avoid failing transactions users have to overestimate the gas required.

Mangrove Association (ADDMA) - Mangrove - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

8.4 Payable Fallback Functions For Taker
Contracts
Note Version 1

Takers may be contracts. When makers are penalised, provision is sent to the takers by a low level call
msg.sender.call{value: amount}(""). In this case, taker contracts must be able to handle the
ether received by implementing fallback functions.

8.5 Tokens With Transfer Fees
Note Version 1

Mangrove is supposed to handle the exchange of ERC20 tokens. As shown in the snippet below, the
system expects to send to the maker the same amount (sor.gives) it received from the taker.
However, in the case of the tokens with transfer fees this trade will fail since the amount received and
forwarded by Mangrove will be different than the one requested due to the fees. By providing additional
balance of this token to the contract ahead of the transaction, a party may make the transfer to succeed
nevertheless. This may be done by either the maker or the taker. The other party then receives less
tokens then expected, as the transfer fee will be deducted.

if (transferTokenFrom(sor.quote, taker, address(this), sor.gives)) {
 if (
 transferToken(
 sor.quote,
 $$(offerDetail_maker("sor.offerDetail")),
 sor.gives
)
) {

 ...

Mangrove Association (ADDMA) - Mangrove - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	3 System Overview
	3.1 Roles
	3.2 Changes in Version 3
	3.3 Changes in Version 5
	3.4 Changes in Version 6
	3.5 Changes in Version 7

	4 Limitations and use of report
	5 Terminology
	6 Findings
	6.1 No Protection for Keepers
	6.2 ECDSA Signature Malleability
	6.3 No Minimum Value for gasreq
	6.4 Redundant Check in writeOffer
	6.5 Spamming the Offerbook

	7 Resolved Findings
	7.1 Draining All Ether Provisions of Mangrove
	7.2 If Condition Always True
	7.3 Rounding Errors In Partial Filling
	7.4 Wrong Comment
	7.5 Call in makerPosthook Fails Silently
	7.6 Fields of Events Not Indexed
	7.7 Imprecise Comment
	7.8 Maximize Penalty Collected
	7.9 Misleading Variable Names in stitchOffers
	7.10 Overrestrictive Check in deductSenderAllowance
	7.11 Repetitive Code

	8 Notes
	8.1 Bitwords Benefits
	8.2 Choosing the Parameter gasreq
	8.3 Estimation of the Gas Limit for a marketOrder Transaction
	8.4 Payable Fallback Functions For Taker Contracts
	8.5 Tokens With Transfer Fees

