

PUBLIC

Code Assessment

of the Mangrove Strategies

Smart Contracts

November 16, 2023

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 7

4 Terminology 8

5 Findings 9

6 Resolved Findings 12

7 Informational 14

8 Notes 15

Mangrove Association - Mangrove Strategies - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear all,

Thank you for trusting us to help Mangrove Association with this security audit. Our executive summary
provides an overview of subjects covered in our audit of the latest reviewed contracts of Mangrove
Strategies according to Scope to support you in forming an opinion on their security risks.

Mangrove Association updated the existing strategies Mangrove Order, implementing Good-till-cancelled
and Fill-or-kill orders, and Kandel, a "buy low, sell high" market-making strategy that leverages the
Mangrove core system, while optimizing the capital efficiency by supplying the idle funds on AaveV3. The
code was mainly adapted for compatibility with the changes made in the core. Additionally, the changes
include some simplifications.

The most critical subjects covered in our audit are functional correctness, access control, absence of
reentrancy possibilities, handling of funds and precision of arithmetic operations. Security regarding all is
generally good. Security regarding functional correctness is good as long as drying out the Aave pool on
purpose, see Provoking an Aave Liquidity Crisis, is unprofitable based on the borrow and supply caps,
and the flashloan fees.

The general subjects covered are code complexity, error handling, unit testing, documentation,
specification, gas efficiency, trustworthiness and error handling. Security regarding all the
aforementioned subjects is high.

In summary, we find that the codebase provides a good level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Mangrove Association - Mangrove Strategies - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 1

• Risk Accepted 1

Medium -Severity Findings 0

Low -Severity Findings 3

• Code Corrected 1

• Specification Changed 1

• Acknowledged 1

Mangrove Association - Mangrove Strategies - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Mangrove Strategies repository
based on the documentation files. The table below indicates the code versions relevant to this report and
when they were received.

V Date Commit Hash Note

1 30 October 2023 220dd1b6c95451278dd095a32a71825394a9530d Initial Version

2 15 November 2023 6d79993939f1e585fcecafd3aadd898fd9de03e3 After fixes

For the solidity smart contracts, the compiler version 0.8.20 was chosen.

The following files are in scope:

./strategies/routers/abstract/AbstractRouter.sol

./strategies/routers/integrations/HasAaveBalanceMemoizer.sol

./strategies/routers/integrations/AavePooledRouter.sol

./strategies/routers/SimpleRouter.sol

./strategies/MangroveOffer.sol

./strategies/MangroveOrder.sol

./strategies/utils/AccessControlled.sol

./strategies/integrations/AaveV3Lender.sol

./strategies/offer_forwarder/abstract/Forwarder.sol

./strategies/offer_maker/abstract/Direct.sol

./strategies/offer_maker/market_making/kandel/abstract/TradesBaseQuotePair.sol

./strategies/offer_maker/market_making/kandel/abstract/CoreKandel.sol

./strategies/offer_maker/market_making/kandel/abstract/GeometricKandel.sol

./strategies/offer_maker/market_making/kandel/abstract/DirectWithBidsAndAsksDistribution.sol

./strategies/offer_maker/market_making/kandel/abstract/KandelLib.sol

./strategies/offer_maker/market_making/kandel/abstract/HasIndexedBidsAndAsks.sol

./strategies/offer_maker/market_making/kandel/abstract/AbstractKandelSeeder.sol

./strategies/offer_maker/market_making/kandel/AaveKandelSeeder.sol

./strategies/offer_maker/market_making/kandel/KandelSeeder.sol

./strategies/offer_maker/market_making/kandel/Kandel.sol

./strategies/offer_maker/market_making/kandel/AaveKandel.sol

./strategies/vendor/aave/v3/IPoolAddressesProvider.sol

./strategies/vendor/aave/v3/IRewardsControllerIsh.sol

./strategies/vendor/aave/v3/IPool.sol

./strategies/vendor/aave/v3/DataTypes.sol

./strategies/interfaces/IForwarder.sol

./strategies/interfaces/IOfferLogic.sol

./strategies/interfaces/IOrderLogic.sol

./strategies/interfaces/ILiquidityProvider.sol

2.1.1 Excluded from scope
All other files are not in scope. The core system is not in scope. External protocols are not in scope. For
Kandel, it is expected that users are aware of what the functions will do. A bad setup could be created.
However, given the trust model, we put such bad setups out of scope (e.g. using the populate()
function can create arbitrary bad distributions).

Mangrove Association - Mangrove Strategies - ChainSecurity - © Decentralized Security AG 5

https://github.com/mangrovedao/mangrove-strats/tree/220dd1b6c95451278dd095a32a71825394a9530d
https://github.com/mangrovedao/mangrove-strats/tree/6d79993939f1e585fcecafd3aadd898fd9de03e3
https://chainsecurity.com

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

For a detailed system overview of the Mangrove Order and Kandel strategies, refer to the respective
previous Mangrove Order audit report and the previous Kandel audit report covering the both strategies.

The following overview will focus on the parts that changed in the updated codebase. The most
significant changes are a consequence of the changes made to the core after the above reports were
published. Additionally, there are some simplifications and refactorings in the Kandel strategies.

Mangrove Association offers peripheral market maker contracts, called strategies, for interaction with
Mangrove core system. The contracts stand as an intermediate component between the end-users and
the Mangrove core system. More specifically, the strategies implement the market maker interface
defined in the core along with some additional functionality for managing offers made. Both implemented
strategies follow roughly the same processes. For example, if their offers had been filled only partially,
they will repost the residual offers on the Mangrove exchange. Yet, the strategies differ significantly. Note
that strategies may have routers which are also described in the above audit reports.

The MangroveOrder strategy is a shared strategy that allows users to take offers on the Mangrove
exchange, taking a role as a taker in the context of Mangrove core. The order must be either fully filled or
a resting offer is posted on the opposite market (subject to parameterization). Note that the resting offer
may be posted with an expiry time so that a good-till-cancelled mode is implemented. For further details,
please consult the audit report mentioned above. Besides the changes in relation to the core,
MangroveOrder did not undergo any significant changes.

Kandel strategies are market maker contracts owned by one end-user. They create bid-ask spreads on
two opposite semi-books with a geometric price progression so that the market makers follow a "buy low
sell high" strategy. The simple Kandel keeps the funds idle while the AaveKandel invests the funds into
Aave in a batched manner through the corresponding Aave router.

Besides the changes regarding the modifications in the core, the Kandel strategies have been simplified
to remove the compounding factor introduced. Now, they will reinvest the full amounts instead of
(optionally only) a portion. Additionally, Kandels received the functionality to create the offer distribution
directly on-chain so that the created bid-ask spread can be instantiated on the Mangrove core system.
Further, note that the Kandel strategies did undergo some additional refactoring.

2.2.1 Trust Model
The trust model is the same as in the previous reports. Please use them for reference. However, note
that the trust model in relation to the core system is according to the core reports.

Mangrove Association - Mangrove Strategies - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com/wp-content/uploads/2023/08/ChainSecurity_Mangrove_Association_ADDMA_MangroveOrder_audit.pdf
https://web.archive.org/web/20231108131605/https://chainsecurity.com/wp-content/uploads/2023/08/ChainSecurity_Mangrove_Association_ADDMA_Kandel_Strats_audit.pdf
https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Mangrove Association - Mangrove Strategies - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Mangrove Association - Mangrove Strategies - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 1

• Risk AcceptedProvoking an Aave Liquidity Crisis

Medium -Severity Findings 0

Low -Severity Findings 1

• AcknowledgedUnsafe Casts for Geometric Kandels

5.1 Provoking an Aave Liquidity Crisis
Security High Version 1 Risk Accepted

CS-MGVSTRATS-004

AaveKandel stops providing liquidity if too much is borrowed. Generally, market makers should be
aware of that. However, one can throw Aave temporarily into a liquidity crisis by

1. flashloaning the entire balance

2. borrowing the entire balance

That could allow an attacker to create a temporary liquidity crisis wrapping a sniping operation on
Mangrove core for his profit.

However, note that the flashloaning attack is to some degree by the economic factor of Aave flashloans
while the other operation can be achieved even for free by taking out free flashloan for collateral assets
on other protocols. Such attacks are however limited by the borrow caps that Aave can impose. Namely,
the attack can be carried out as long as the Aave's available capital after the borrow cap is reached is
less than an offer's promised amount. Note that 1. and 2. can be combined to reduce the total cost of an
attack with 1. so that the limit set by the borrow caps can be bypassed.

Risk accepted:

Mangrove Association replied:

1/ deploy 80 offers from AAVE kandel (WETH,USDC) on mangrove

Note 1: 80 offers is the limit beyond which one cannot collect all failing offers because of stack overflow
Note 2: WETH has borrow cap on AAVE so the attack has to be on offers that have USDC outbound

Mangrove Association - Mangrove Strategies - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

2/ attacker supplies enough DAI on AAVE to be able to borrow the whole supply of USDC

Note 1: the script mocks up a flashloan of DAI to obtain enough collateral. There is currently no real way to
flashloan DAIs on polygon. In the overall cost of the attack we add 400K gas as an estimate of the flashloan
cost plus the cost of repaying the borrow on AAVE which is not scripted here (AAVE on polygon still does not
allow repay and borrow on the same block, although ethereum deployment does). The attack using AAVE native
flashloan has also been tested but result in a prohibitive cost for the attacker (around 1000 USD worth of fees).

Note 2: there is currently a supply cap on AAVE for DAI which is just enough to do this, but supplying a bit too
much DAI actually reverts

3/ attacker borrows USDC supply and triggers a market order

4/ all 80 aave kandel offers trigger a failure cascade and the bounty is sent to the attacker
Assuming a tx.gasprice == Mangrove’s gasprice at 90 gwei, we get:

 • Attack collects 0.84691197 matics for 9 936 879 gas units
 • cost of the attack: 0.89431911 native tokens

Conclusion:

 - Under favorable gas conditions for the attacker, drying up the AAVE pool can be profitable (when tx.gasprice is
 significantly lower than Mangrove’s). However the profit is quite low compared to traditional flashloan attacks
 and not iterable: failing Aave Kandel’s offer do not repost themselves. Yet the attack would at least be griefing
 users as it would result in losing provision and having their offers unpublished from Mangrove.

 - We believe the best protection relies on launching AAVE Kandel Strats on markets that have a borrow cap,
 which would force the attacker of going through the costly AAVE flashloan mechanism to bypass the cap.

 - The above script is included in the test AaveKandel.t.sol (test_liquidity_borrow_marketOrder_attack)

5.2 Unsafe Casts for Geometric Kandels
Correctness Low Version 1 Acknowledged

CS-MGVSTRATS-003

KandelLib.createGeometricDistribution() performs several unsafe casts. Namely, there are
casts from uint to int for _baseQuoteTickOffset and indices.

The unsafe casts for _baseQuoteTickOffset may create problems and wrong results for the usage of
GeometricKandel.createDistribution(). Additionally, the parameters specified are not validated
(e.g. price points could be less than or equal to the step size or they could be too high). However, the
other functions defined ensure that the reasonable restrictions for the geometric parameters are
enforced.

The casting of indexes, however, may even create problems for the populating functions. Consider, the
following.

int tick = -(Tick.unwrap(baseQuoteTickIndex0) + int(_baseQuoteTickOffset) * int(index));

Assume that index == 2**256-1-x, then the cast will return -1-x. Ultimately, a positive tick will be
turned into a negative one, only to turn it back into a positive one. That positive tick will be used for bids.
The following will become the tick for the bid in such a scenario.

int tick = Tick.unwrap(baseQuoteTickIndex0) + int(_baseQuoteTickOffset) * (1+x);

As a consequence, the bid prices increase with increasing indices (worse for market makers) instead of
decreasing. Hence, the bids would bid a too high price.

Note that indices can reach that size (e.g. from is high).

Ultimately, the behaviour is undefined and may create bad setups.

Acknowledged:

Mangrove Association - Mangrove Strategies - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

Mangrove Association acknowledged the behaviour and indicates that these parameters should be
validated off-chain similar to other ones:

In general parameters are considered validated off-chain, e.g., through simulation
before passing to the contracts, so it is up to the caller to ensure correct usage.

Mangrove Association - Mangrove Strategies - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 2

• Code CorrectedLack of Router Sanity Check

• Specification ChangedSpecification Mismatch

Informational Findings 2

• Code CorrectedGas Optimisations

• Code CorrectedLack of Events

6.1 Lack of Router Sanity Check
Design Low Version 1 Code Corrected

CS-MGVSTRATS-001

While the MangroveOffer library does not enforce a router to be set, more derived contracts such as
Forwarder strictly require a router. However, setRouter() is not adapted to enforce such a check.

Code corrected:

A check has been added to Forwarder and to AaveKandel which are the strategies that require a
router to be set.

6.2 Specification Mismatch
Correctness Low Version 1 Specification Changed

CS-MGVSTRATS-002

The specification of RESERVE_ID states that

///@dev RESERVE_ID==address(0) will pass address(this) to the router for the id field.

However, RESERVE_ID will never be address(0) as it is set to address(this) if the corresponding
constructor argument is address(0).

Additionally, the documentation of the geometric price of baseQuoteTickIndex0 describes the
following

Mangrove Association - Mangrove Strategies - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

///@param baseQuoteTickIndex0 the tick of base per quote for the price point at index 0 [...]

However, that may be misinterpreted. Namely, considering the two markets for asks and bids, the ask's
price will be denominated in quote per base (ratio of inbound and outbound) while the bids' prices will be
denominated in base per quote. The documentation, thus, suggests that the tick is defined for the market
of the bids. However, that contrasts the implementation where the tick is used for the ask markets.

Specification changed:

The NatSpec has been adjusted.

6.3 Gas Optimisations
Informational Version 1 Code Corrected

CS-MGVSTRATS-005

Below is an incomplete list of potential gas optimisations:

1. In Forwarder.sol, deriveGasprice() evaluates 1e6 * (offerGasbase + gasreq) to
compute a value that is already in num.

2. In CoreKandel.sol, setParams guards against truncation when casting
newParams.pricePoints to uint32. This is unnecessary since newParams.pricePoints is
already an uint32.

3. setExpiry() and retractOffer() in MangroveOrder have the mgvOrOwner modifier.
However, the core will never call these functions.

Code corrected:

The code has been adjusted to include the above gas optimisations.

6.4 Lack of Events
Informational Version 1 Code Corrected

CS-MGVSTRATS-006

While the codebase emits events on many occasions, a SetAdmin is missing in the constructor of the
AccessControlled contract.

Code corrected:

The event is now emitted.

Mangrove Association - Mangrove Strategies - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Magic Values
Informational Version 1 Acknowledged

CS-MGVSTRATS-007

The use of magic numbers in the codebase is not recommended, they should be replaced by variables
with a self-explanatory name. Examples are:

• "mgv/writeOffer/density/tooLow"

• "mgv/tradeSuccess"

Acknowledged:

Mangrove Association replied:

since these magic values are part of mangrove’s specification, we assume they won’t change.

Mangrove Association - Mangrove Strategies - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Hypothetical Bad Setups for Kandels
Note Version 1

While we exclude "weird" setups for the Kandel from scope, we would like to give an incomplete list of
examples of such breaking setups:

1. populate() does not enforce the geometric price progression over indices. The distribution could
be arbitrary.

2. populate() does not enforce that for every index a bid and ask exist. Hence, one could create
setups where the updating of dual offers would always fail due to a lack of offer ID.

3. The geometric population functions have assumptions such as the tick spacing of the market being
respected by the arguments.

8.2 Maker Should Oversupply Due to Aave Being
off by 1
Note Version 1

The maker should oversupply AaveKandel by some WEI to account for Aave internal loss of precision,
which can lead the token amount to be off by 1 on redemption, as it could make the trade revert if they
are the only one to use the Aave pool from a given AavePooledRouter.

8.3 Supplying Caps Not Considered
Note Version 1

Aave V3 has supply caps. However, these are not considered when supplying. Hence, supplying could
fail so that tokens are treated as buffered.

8.4 Updating Approvals on Order Update
Note Version 1

A user can update their orders by using Forwarder.updateOffer. Users need to remember that, in
case the makerExecute hook to their order fails, they will have to reimburse the taker. A reason for an
order to fail is that there is not enough allowance given to the router to transfer funds from the maker's
reserve to the MangroveOrder contract. This is highly likely to happen after a user updates their offer by
having it give more funds to the taker.

Mangrove Association - Mangrove Strategies - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

8.5 AaveKandelSeeder Missing Existence Check
of Pool for Asset
Note Version 1

No check is done on strategy deployment for a pool of BASE or QUOTE on AaveV3. If such pools cannot
be supplied, the AaveKandel strategy can be deployed but there will be no yield from the deposits to the
router.

Mangrove Association - Mangrove Strategies - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Provoking an Aave Liquidity Crisis
	5.2 Unsafe Casts for Geometric Kandels

	6 Resolved Findings
	6.1 Lack of Router Sanity Check
	6.2 Specification Mismatch
	6.3 Gas Optimisations
	6.4 Lack of Events

	7 Informational
	7.1 Magic Values

	8 Notes
	8.1 Hypothetical Bad Setups for Kandels
	8.2 Maker Should Oversupply Due to Aave Being off by 1
	8.3 Supplying Caps Not Considered
	8.4 Updating Approvals on Order Update
	8.5 AaveKandelSeeder Missing Existence Check of Pool for Asset

